SPEECH ACTIVITY DETECTION AND SPEAKER DIARIZATION FOR LECTURES

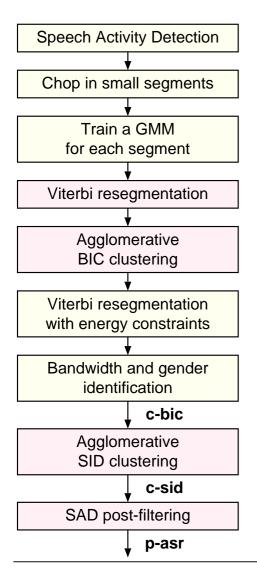
presented by Xuan Zhu

RT-06s workshop Bethesda, Maryland May 4, 2006

INTRODUCTION

Task

- speech activity detection: speech/non-speech
- speaker diarization: who spoke when


Data type

- Broadcast News (BN)
- Lecture recordings: seminars and conferences

Challenges of lecture / seminar data

- spontaneous speech with overlaps
- variations of microphone characteristics and positions for MDM condition
- crosstalk in IHM condition

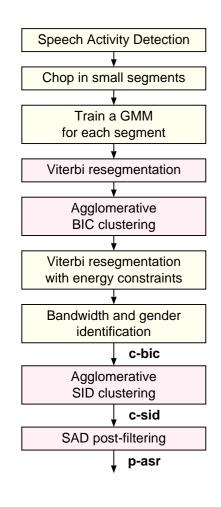
SPEAKER DIARIZATION SYSTEM FOR BN (1)

Front-end

• 38 features: 12 MFCC + 12 Δ + 12 $\Delta\Delta$ + Δ E + $\Delta\Delta$ E

Speech activity detection

 Viterbi decoding with 5 models: speech, music, speech over music, noise, silence GMMs (64 Gaussians)


Chop into small segments

 2 sliding windows of 5 sec, local divergence measure

GMM estimation for each segment

 8-component GMM with diagonal covariance matrix per segment

SPEAKER DIARIZATION SYSTEM FOR BN (2)

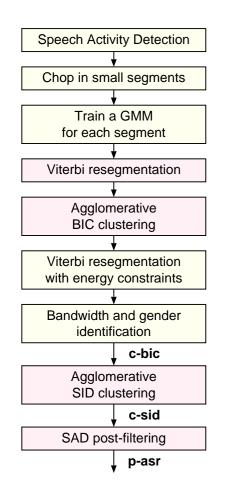
BIC Agglomerative clustering

- Gaussian with full covariance matrix
- merge criterion

$$\Delta BIC = (n_i + n_j)log|\Sigma| - n_i log|\Sigma_i| - n_j log|\Sigma_j| - \lambda_i$$
 with penalty

$$P=rac{1}{2}(d+rac{1}{2}d(d+1))\log N$$

• stop criterion


$$\Delta BIC >= 0$$

BIC penalty

ullet local: $N=n_i+n_j$

ullet global: $N=\Sigma_k\,n_k$

SPEAKER DIARIZATION SYSTEM FOR BN (3)

SID clustering

- 15 MFCC + Δ + Δ E, feature warping (Gaussian normalization)
- Universal Background Models (UBM) with 128 Gaussians (male/female, studio/telephone)
- MAP adaptation of matching UBM
- ullet cross log-likelihood ratio between clusters c_i and c_j

$$clr(c_i, c_j) = rac{1}{n_i}lograc{f(x_i|M_j)}{f(x_i|UBM)} + rac{1}{n_j}lograc{f(x_j|M_i)}{f(x_j|UBM)}$$

with x_i the data from cluster c_i , M_i the model for cluster c_i , n_i the size of segment x_i

ullet threshold δ

SAD ADAPTED ON LECTURE DATA

SAD on BN

 Viterbi decoding with 5 models trained on BN data: speech, noise, speech over music, pure music and silence GMMs

Log-likelihood based SAD for lecture data

- GMMs for speech and non-speech (silence or noise)
- trained on far-field data (7 ISL seminars recorded in 2003)
- log-likelihood (Ilh) ratio between 2 models computed for each frame
- different prior probabilities for speech and non-speech
- transition points detected by the maxima of the mean of Ilh over smoothing window of 100 frames

AUDIO INPUT FOR SPKR SYSTEM

dataset	condition	AIT	IBM	ITC	UKA	UPC
dev	MDM	mic05	Audio_17	Table-1	TableTop-1	channel15
eval	MDM	mic06	Audio_17	Table-2	TableTop-1	channel16
eval	SDM	mic05	Audio_19	Table-1	Table-2	channel15

- MDM: single microphone signal randomly selected from available MDM channels and different from the channel of SDM
- SDM: single distant microphone signal defined by NIST
- MM3A: beam-formed multiple mark III microphone array data provided by Karlsruhe lab

SAD EXPERIMENTS ON LECTURE DATA

- varied the acoustic data use to train the GMMs
- varied the number of GMMs
- viterbi decoding vs smoothed IIh based SAD
- varied the number of Gaussians per mixture
- varied prior probabilities for speech/non-speech

RESULTS ON DEV FOR MDM (1)

system	Missed	False alarm	Speaker	overlap
	speech(%)	speech(%)	error(%)	SPKR Err.(%)
vitbn	18.2	3.0	9.0	30.19
vitbn+mt	19.3	2.9	8.7	30.96
vitmt	14.2	3.7	12.4	30.23
gmtmt	2.7	6.1	11.7	20.53

Different SAD used in the speaker diarization system

- vitbn: Viterbi decoding using 5 GMMs(64 Gaussians) trained on BN data
- vitbn+mt: Viterbi decoding using GMMs trained on BN data plus GMMs (256 Gaussians) for speech and non-speech trained on lecture data
- vitmt: Viterbi decoding only using 2 GMMS trained on lecture data
- gmtmt: log-likelihood ratio based SAD with a prior probability of 0.2 for non-speech and 0.8 for speech
- ullet BIC penalty weight $\lambda=3.5$, SID threshold $\delta=0.5$

RESULTS ON DEV FOR MDM (2)

nb. Gaussians		False alarm		
	speech(%)	speech(%)	error(%)	SPKR Err.(%)
64	9.5	4.0	11.0	24
128	9.5	3.7	11.0	24
256	7.8	4.2	11.0	23
512	7.7	4.2	11.1	23

Models with varied number of Gaussians used in IIh based SAD

- ullet with a prior probability for non-speech and speech being 0.4:0.6
- ullet BIC penalty weight $\lambda=3.5$
- ullet SID threshold $\delta=0.5$
- no improvements above 256 Gaussians

RESULTS ON DEV FOR MDM (3)

P(NS):P(S)	Missed	False alarm	Speaker	overlap
	speech(%)	speech(%)	error(%)	SPKR Err.(%)
0.1:0.9	1.0	9.5	12.0	22.43
0.2:0.8	2.7	6.1	11.7	20.53
0.3:0.7	5.2	5.0	11.3	21.51
0.4:0.6	7.8	4.2	11.0	22.99

Different prior probabilities for non-speech and speech

- using 256-component GMMs for speech and non-speech
- ullet BIC penalty weight $\lambda=3.5$
- ullet SID threshold $\delta=0.5$

EVALUATION RESULTS

system	overlap	overlap	non-overlap
	SAD Err.(%)	SPKR Err.(%)	SPKR Err.(%)
MDM_g256_p2-8	9.53	24.58	24.09
SDM_g256_p2-8	12.09	26.21	25.79
MM3A_g128_p4-6	12.85	27.11	26.57

Configuration of SAD

- "g": number of Gaussians used in GMMs for speech and non-speech
- "px-y": prior probabilities for non-speech and speech being 0.x:0.y

Configuration of SPKR

- ullet BIC penalty weight $\lambda=3.5$
- ullet SID threshold $\delta=0.5$

CONCLUSIONS

Speaker diarization system for lecture data

- log-likelihood based SAD reduced SAD error by 60% on dev for MDM
- overall diarization error on test data:
 24.6% for MDM and 27.1% for MM3A
- combination of BIC and SID clustering effective on both BN and lecture data
- blind speaker diarization: we hypothesize that the entire signal is speech from one speaker, (i.e. no non-speech)
 SAD error of 13% and SPKR error of 27% for MDM

Future directions

- preprocessing step to combine all MDM channels to one single channel
- combination of SAD results on each MDM channels